|
Microscale Chemistry (often referred to as Small-Scale Chemistry, in German: Chemie im Mikromaßstab) is an analytical method and also a teaching method widely used at school and at university levels, working with small quantities of chemical substances. While much of traditional chemistry teaching centers on multi-gramme preparations, milligrammes of substances are sufficient for Microscale Chemistry. In Universities modern and expensive lab glassware is used and modern methods for detection and characterization of the produced substances are very common. In schools and in many countries of the Southern hemisphere small-scale working takes place with low-cost and even no-cost material. There has always been a place for small-scale working in qualitative analysis, but the new developments can encompass much of chemistry a student is likely to meet. == History == There are two main strands of the modern approach. One is based on the idea that many of the experiments associated with General Chemistry (acids and bases, oxidation and reduction, electrochemistry, etc.) can be carried out in equipment much simpler (injection bottles, dropper bottles, syringes, wellplates, plastic pipettes) and therefore cheaper than the traditional glassware in a laboratory, thus enabling the expansion of the laboratory experiences of students in large classes and to introduce laboratory work into institutions too poorly equipped for standard-type work. Pioneering development in this area was carried out by Egerton C. Grey (1928), Mahmoud K. El-Marsafy (1989)〔 〕 in Egypt, Stephen Thompson in the US and others. A further application of these ideas was the devising by Bradley of the Radmaste kits〔 〕 in South Africa, designed to make effective chemical experiments possible in developing countries in schools that lack the technical services (electricity, running water) taken for granted in many places. The other strand is the introduction of this approach into synthetic work, mainly in organic chemistry. Here the crucial breakthrough was achieved by Mayo, Pike and Butcher and by Williamson who demonstrated that inexperienced students were able to carry out organic syntheses on a few tens of milligrams, a skill previously thought to require years of training and experience. These approaches were accompanied by the introduction of some specialised equipment, which was subsequently simplified by Breuer without great loss of versatility.〔 The text of the book is available in electronical format free from the author.〕 There is a great deal of published material available to help in the introduction of such a scheme, providing advice on choice of equipment, techniques and preparative experiments and the flow of such material is continuing through a column in the Journal of Chemical education called ‘The Microscale Laboratory’ that has been running for many years. Scaling down experiments, when combined with modern projection technology, opened up the possibility of carrying out lecture demonstrations of the most hazardous kind in total safety. The approach has been adopted worldwide. It has become a major presence on the educational scene in the US, it is used to a lesser extent in the UK and it is used in many countries in institutions with staff who are enthusiastic about it. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Microscale chemistry」の詳細全文を読む スポンサード リンク
|